
MEASURING EFFICIENCY IN NURSING STUDENT PATIENT CARE SKILLS USING VIRTUAL PATIENT SIMULATION


Francisco A. Jimenez, PhD, CHSE Cheryl Wilson, DNP, APRN, ANP-BC, FNP-BC, CNE, CHSE Natalie Wright, PhD

> AACN Transform 2021 Conference Friday, December 3 Dallas, TX

1

	CONFLICT OF INTEREST
sc	he authors of this presentation are employed by a publishing company specializing in cientific, technical, and medical content, including simulations for nursing education. to additional funding was received for this project.
L	

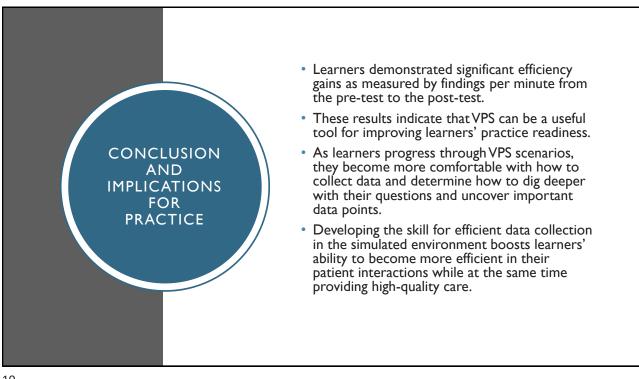
VIRTUAL PATIENT SIMULATION

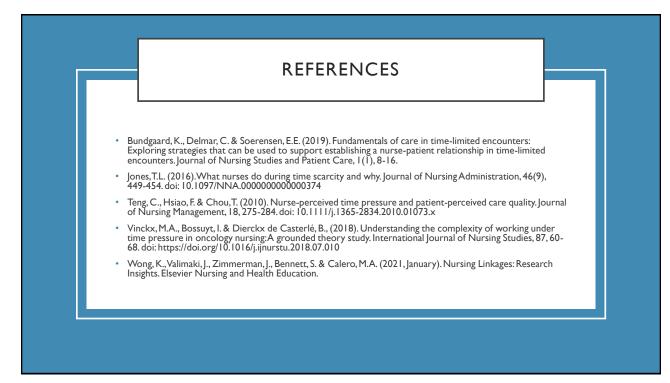
- Virtual patient simulation (VPS) is the use of partial immersion through a digital learning environment to foster a perceived lived experience for an intended outcome (Foronda, 2021).
- Compared with traditional education, VPS can effectively improve knowledge, clinical reasoning, procedural skills, and a mix of procedural and team skills (Kononowicz et al., 2019).
- Effectively supports several student learning outcomes and skills in nursing education (Foronda et al., 2020).
 - History taking (Luo et al., 2019).
 - Empathy (Strekalova et al., 2016).
 - Diagnostic reasoning (Duff et al., 2016).
 - Debriefing (Verkuyl et al., 2020).
 - Cultural humility and competence (Chae et al., in press; Tyerman et al., 2021).
- Can be used to replace traditional clinical hours!

 Provide learner with the context and information they may need before encountering scenario. Set up learner's role and expectations. Outline simulation objectives and what will be evaluated. 	 Interview digital standardized patient. Conduct physical assessments. Document findings in EHR. Apply therapeutic communication. 	 Bynthesize data collected. Develop a nursing diagnosis. Identify a treatment goal. Plan interventions and evaluations. Discuss care. Assess whether care goals were achieved. 	 Obtain assignment performance score. View score breakdown by learning activity. Review model responses.

5

THE RESEARCH PROCESS




- Used a sample of 2,246 first-semester, pre-licensure nursing students enrolled in a health assessment course at a public university in the Southwestern United States.
- Health assessment course integrated the VPS in-simulation pre- and post-test with a cardiovascular focused assessment assignment in the spring of 2021.
- **Efficiency** was defined by the number of correct findings per minute spent with the **simulated virtual patient** across all components of learner performance, including subjective and objective patient data collection, therapeutic communication, and care plan creation.

7

Table 1: Averages and change in eff	îciency from th	ne pre-test to the p	ost-test]
Measure	Pre-test average	Post-test average	Percentage change	Percentage of students showing positive change
Overall efficiency (findings per minute)	1.19	1.68	41%	82%
Time spent (in minutes)	68 min	58 min	15%	62%**
Education and empathy score	1	2	100%	67%
Care plan score	8	9	13%	68%

	RESU II	LTS			
Table 2: Regression results using post-test overall efficiency as the criterion					
Predictor	Ь	ь 95% СІ [LL, UL]	r		
(Intercept)	1.40**	[1.31, 1.49]			
Pre-test efficiency	0.04**	[0.01, 0.06]	.29**		
Time spent (post-test)	-0.03**	[-0.03, -0.03]	72**		
Assignment performance (post-test)	0.04**	[0.03, 0.04]	.21**		
Number of interview questions (post-test)	0.00**	[0.00, 0.00]	.04		
Number of empathetic statements (post-test)	0.01**	[0.00, 0.01]	.03		
Number of educational statements (post-test)	0.01**	[0.01, 0.02]	01		
Model fit			R ² = .812** 95% CI [.80, .82]		

Francisco A. Jimenez

francisco@shadowhealth.com

Cheryl Wilson

cheryl.wilson@shadowhealth.com

Natalie Wright

natalie.wright@shadowhealth.com